“973计划”西南印度洋洋中脊热液成矿过程与硫化物矿区预测项目申请书参考文献

Bemis, K.G., R.P. Von Herzen, M.J. Mottl. 1993. Geothermal heat flux from hydrothermal plumes on the Juan de Fuca Ridge. J. Geophys. Res., 98: 6351-6365.

Bennett, S.A., E.P. Achterberg, D.P. Connelly, et al. 2008. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth Planet. Sci. Lett., 270: 157-167.

Chen, Y., and W. J. Morgan. 1990. A nonlinear-rheology model for mid-ocean ridge axis topography. J. Geophys. Res., 95: 17583-17604.

Chen, Y.J. 2000. Dependence of crustal accretion and ridge axis topography on spreading rate, mantle temperature, and hydrothermal cooling, in Ophiolites and Oceanic Crust: New Insights From Field Studies and the Ocean Drilling Program, edited by Y. Dilek et al., Spec. Pap. Geol. Soc. Am., 349: 161-179.

Chen, Y.J. 2003. Influence of the Iceland mantle plume on crustal accretion at the inflated Reykjanes Ridge-Magma lens and low hydrothermal activity? J. Geophys. Res., 108: 2524.

Chunhui Tao, Jian Lin, Shiqin Guo, et al. 2007. The Chinese DY115-19 Cruise: Discovery of the First Active Hydrothermal Vent Field at the Ultraslow Spreading Southwest Indian Ridge. InterRidge News, 16: 25-26.

Converse, D.R., H.D. Hollard, and J.M. Edmond. 1984. Flow rates in the axial hot springs of the East Pacific Rise: Implications for the heat budget and the formation of massive sulfide deposits: Earth Planet. Sci. Lett., 69: 159-175.

Cowen, J.P., X. Wen, R. Jones, et al. 1998. Elevated NH4+ in a neutrally buoyant hydrothermal plume. Deep-Sea Res., 45: 1891-1902.

Dick, H.J.B., J. Lin, and H. Schouten. 2003. An ultraslow-spreading class of ocean ridge, Nature, 426: 405-412.

Dick,G.J., S. Podell, H.A. Johnson, et al. 2008. Genomic insights into Mn2+ oxidation by the marine alphaproteobacterium Aurantimonas strain SI85-9A1. Appl. Env. Microbiol., 74: 2646-2658.

Edmonds, H.N., P.J. Michael, E.T. Baker, et al. 2003. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature, 421: 252-256.

Elderfield, H., and A. Schultz. 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci., 24: 191-224.

Fouquet Y, R. Knott, P. Cambon, et al. 1996. Formation of large sulfide mineral deposits along fast spreading ridges. Example from off-axial deposits at 12°43′N on the East Pacific Rise. Earth Planet. Sci. Lett., 144:147-162.

Ganachaud, A., C. Wunsch, J. Marotzke, et al. 2000. Meridional overturning and large-scale circulation of the Indian Ocean. J. Geophys. Res., 105: 26117-26134.

Germana, C.R.,  A. Bowena, M.L. Colemanb, et al. 2010. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. PNAS Early Edition, 1-6.

Ginster, U., M.J. Mottl, R.P. Von Herzen. 1994. Heat flux from black smokers on the Endeavour and Cleft segments, Juan de Fuca Ridge. J. Geophys. Res., 99: 4937-4950.

Huaiyang Zhou, Jiangtao Li, Xiaotong Peng, et al. 2009. Microbial diversity of a sulfide black smoker in main endeavour hydrothermal vent field, Juan de Fuca Ridge. J Microbiol., 47: 235-247.

Kato, S., C. Kobayashi, T. Kakegawa, et al. 2009. Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the southern Mariana Trough. Environ. Microbiol., 11: 2094-2111.

Kelley, D.S., J.A. Karson, G.L. Fruh-Green, et al. 2001. The Lost City hydrothermal field. Nature, 412: 145-147.

Kelley, D.S., J.A. Karson, G.L. Fruh-Green, et al. 2005. A serpentinite-hosted ecosystem: The Lost City hydrothermal field. Science, 307: 1428-1434.

Labrenz, M., G.K. Druschel, T. Thomsen-Ebert. 2000. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science, 290: 1744-1747.

MacKinnon, J. A., T. M. S. Johnston and R. Pinkel. 2008. Strong transport and mixing of deep water through the Southwest Indian Ridge. Nature Geoscicence, 1: 755-758.

Murton, B.J., G. Klinkhammer, K. Becker et al. 1994. Direct evidence for the distribution and occurrence of hydrothermal activity between 27°N-30°N on the Mid-Atlantic Ridge. Earth Planet. Sci. Lett., 125: 119-128.

Nunoura, T., and K. Takai. 2009. Comparision of microbial communities associated with phase separation induced hydrothermal fluids at the Yonaguni Knoll IV hydrothermal field, the Southern Okinawa Trough. FEMS Microbiol. Ecol., 67: 351-370.

Petukhov, S. and P.A. Alexsandrov. 2006. Deformation model of hydrothermal sulfide ore fields, based on the block structure of a host area. 3rd biannual Conference inerals of the Ocean, NIIOkeangeologia, Russia.

Phipps Morgan, J., and Y.J. Chen. 1993. Dependence of ridge-axis morphology on magma supply and spreading rate. Nature, 364: 706-708.

Purdy, G. M., L.S.L. Kong, G.L. Christeson, and S. Solomon. 1992. Relationship between spreading rate and the seismic structure of mid-ocean ridges. Nature, 355: 815-817.

Ramondenc, P., L.N. Germanovich, K.L. Von Damm, et al. 2006. The first measurements of hydrothermal heat output at 9°5′N, East Pacific Rise. Earth Planet. Sci. Lett., 245: 487-497.

Reysenbach, A.L. and S. Cady. 2001. Microbiology of ancient and modern hydrothermal systems. Trends Microbiol., 9: 79-86.

Rudnicki, M.D. and C.R. German. 2002. Temporal variability of the hydrothermal plume above the Kairei vent field, 25°S of the Central Indian Ridge. Geochem. Geophys. Geosys., 3(2), doi:10.1029/2001GC000240.

Sinha, M.C., D.A. Navin, L.M. MacGregor, et al. 1997. Evidence for accumulated melt beneath the slow-spreading Mid-Atlantic Ridge. Philos. Trans. R. Soc. London, Ser. A, 355: 233-253.

Stein, C.A., and S. Stein. 1994. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res., 99: 3081-3095.

The MELT Seismic Team. 1998. Imaging the deep seismic structure beneath a mid-ocean ridge: The MELT experiment. Science, 280: 1215-1218.

Thomas M. McCollom. 2007. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems. Astrobiology, 7: 933-950.

Tolstoy, M., A.J. Harding, J.A. Orcutt, et al. 1995. A seismic refraction investigation of the Australian Antarctic Discordance and neighboring South East Indian Ridges: Preliminary results, Eos Trans. AGU, 76(17), Spring Meet. Suppl., S275.

Toole, J. M. and B. Warren. 1993. A hydrographic section across the subtropical South Indian Ocean. Deep-Sea Res. I, 40: 1973–2019.

Turner, J. and I. Campbell. 1987. Temperature, density and buoyancy fluxes in black smoker plumes and the criterion for buoyancy reversal. Earth Planet. Sci. Lett., 86: 85–92.

Wakeham, S.G., J.P. Cowen, B.J. Burd, et al. 2001. Lipid-rich ascending particles from the hydrothermal plume at Endeavour Segment, Juan de Fuca Ridge. Geochim. Cosmochim. Acta, 65(6):923-939.

Walter, M., C. Mertens, U. Stöber, et al. 2010. Rapid dispersal of a hydrothermal plume by turbulent mixing. Deep-Sea Res. I, 57(8): 931-945.

Warren, B. A. 1978. Bottom water transport through the Southwest Indian Ridge. Deep-Sea Res., 25: 315–321.

包申旭,周怀阳 ,彭晓彤,等. Juan de Fuca洋脊Endeavour段热液硫化物稀土元素地球化学特征. 地球化学,2007,36(3):303-310.

曾志刚,秦蕴珊,翟世奎. 大西洋洋中脊海底表层热液沉积物的铅同位素组成及其地质意义. 青岛海洋大学学报,2001,31(1):103-109.

曾志刚,王晓媛,张国良,等. 东太平洋海隆13°N附近Fe-氧羟化物的形成:矿物和地球化学证据. 中国科学(D),2007,37(10):1349-1357.

曾志刚,翟世奎,杜安道. 冲绳海槽Jade 热液区海底块状硫化物的Os 同位素组成. 海洋与湖沼,2003,34(4):407-413.

曾志刚,翟世奎,杜安道. 大西洋洋中脊TAG热液区中块状硫化物的Os 同位素研究. 沉积学报,2002,20(3):394-398.

初风友,陈丽蓉,石学法. 大西洋中脊热液黄铁矿的标型演化特征研究. 科学通报,1995,40(12):1119-1121.

蒋少涌,杨涛,李亮,等. 大西洋洋中脊TAG热液区硫化物铅和硫同位素研究. 岩石学报,2006,22(10):2597-2602.

彭晓彤,周怀阳,姚会强,等. 中印度洋洋脊Edmond热液场Fe/Si沉淀与微生物的关系. 科学通报. 2007,52:2529-2534.

彭晓彤,周怀阳. EPR9-10°N热液烟囱体的结构特征与生长历史. 中国科学(D),2005,35(8):720-728.

秦蕴珊,翟世奎,曾志刚. 冲绳海槽Jade热液区块状硫化物中流体包裹体的氦、氖、氩同位素组成. 海洋学报,2003,25(4):36-42.

陶春辉 等,DY115-20航次第六航段现场调查报告,中国大洋协会,2009.

陶春辉 等,DY115-20航次第七航段现场调查报告,中国大洋协会,2009.

陶春辉 等,DY115-20航次第五航段现场调查报告,中国大洋协会,2008.

吴世迎,白黎明,吴军瑞. 马里亚纳海槽海底热液硫化物的同位素地球化学特征. 质谱学报,2004,25(10):173-174.

吴世迎,刘炎光,白黎明,等. 太平洋三海区热液硫化物中黄铁矿的形态标型和矿物标型特征研究. 海洋科学进展,2005,23(1):27-34.

吴世迎,刘炎光,白黎明,等. 太平洋三海区热液烟囱物的地球化学和氧同位素标型特征研究. 质谱学报,2003,24(1):275-277.

吴雪枚,周怀阳,彭晓彤. 热液硬石膏流体包裹体的显微测温实验研究. 高校地质学报,2007(13):722-729.

翟世奎,许淑梅,于增慧,等. 冲绳海槽北部两个可能的现代海底热液喷溢点. 科学通报,2001,46(6):490-492.

翟世奎,于增慧,杜同军. 冲绳海槽中部现代海底热液活动在沉积物中的元素地球化学记录. 海洋学报,2007,2(1):58-65.

李克强:大力发展海洋事业 服务祖国造福人类

李克强与中国极地和大洋考察队员视频通话并会见部分科考队员 新华社记者刘卫兵摄

李克强在与中国极地和大洋考察队员视频通话并会见部分科考队员时强调

大力发展海洋事业 服务祖国造福人类

    新华网北京2月11日电 新春佳节来临之际,中共中央政治局常委、国务院副总理李克强11日下午来到国家海洋局,通过视频向远在南极、北极和大洋上执行任务的中国科考队员致以亲切问候,并会见了部分科考队员。他强调,要统筹国内发展和对外开放,大力发展海洋事业,加强极地和大洋科学考察工作,服务祖国,造福人类。

    在国家海洋局会议室,李克强通过卫星视频和电话连线,与中国第26次南极考察队、“雪龙”号船、中国南极长城站、中山站、昆仑站、中国北极黄河站、第21航次大洋考察队人员进行了亲切对话。他说,你们远离亲人,远离祖国,工作和生活在冰雪覆盖的南北极和条件艰苦的大洋,我代表党中央、国务院向你们致以诚挚问候!从你们身上,我们看到了科学求实、甘于奉献的精神。你们的每一份努力,都是在谱写极地和大洋考察的不平凡历史,都是对我国海洋事业的重要贡献。祖国和人民感谢你们!

    在听取前方考察队员介绍后,李克强指出,当今世界,人口、资源、环境问题日益突出,合理开发利用自然资源、保护和改善生态环境、有效应对全球气候变化、促进世界经济全面平衡持续发展、推动健康复苏,已经成为国际社会共同面对的重大课题。与此同时,人类活动由陆地向海洋、极地、太空拓展的进程在加快,南极、北极和大洋在全球环境与发展中的重要作用越来越被人们所认识,这些地方蕴藏的经济和科学资源越来越为诸多国家所关注。极地和大洋考察是一项光荣而艰巨的事业,意义深远,责任重大。过去一年,我国海洋事业持续发展,大洋和极地考察工作中涌现出许多感人的先进事迹。新的形势下,希望科考队员和海洋工作者继续发扬团结、拼搏、创新、求实精神,大力加强科学考察和研究能力建设,培养和造就一支热爱祖国、作风优良、业务精湛的工作队伍,把极地和大洋考察事业不断推向前进。

    李克强对考察队员说,你们在极为恶劣的气候环境中辛勤工作,不畏艰险,排除困难,为我国极地和海洋事业发展做出了突出贡献。希望你们不负使命,再接再厉,再创佳绩。李克强嘱咐有关部门同志要为极地和大洋考察提供良好的后勤保障,关心照顾好考察队员家属的生活,使前方考察队员安心、愉快、顺利工作。

    近年来,我国科考队员在太平洋、印度洋开展深海多金属结核调查,从海底深处获得了硫化物等矿石样本。在仔细察看反映极地和大洋科考成果的实物与图片后,李克强指出,海洋资源利用的潜力很大。要把近海勘探开发与大洋科学考察结合起来,积极开发海洋资源,大力发展海洋经济,保护好海洋生态环境,维护好我国海洋权益,不断提高海洋工作水平。

    中国第26次南极考察队乘“雪龙”号船出发4个月以来,多次顺利穿越西风带,目前已完成长城站和中山站第一阶段航渡及运输任务,正在进行南大洋考察工作。南极内陆昆仑站、格罗夫山考察和其它各项科考及后勤工作已接近尾声。北极黄河站科考工作正有序推进。“大洋一号”科考船在海上调查已达210天,航程约2.5万海里,现正在西南印度洋执行第六航段海上调查任务。

 
 
(责任编辑: 陈元 )

西南印度洋洋中脊科学考察圆满结束

由周怀阳教授担任首席科学家的中国大洋科考21航次第五航段西南印度洋洋中脊环境调查顺利结束。该次科考历时33天,是我国首次在西南印度洋洋中脊开展的比较系统的环境和生物多样性综合调查,考察区域为西南印度洋洋中脊热液硫化物区(A区)和一新区(Gallieni区)。来自全国15个单位的40名调查队员乘坐“大洋一号”科考船参加了该次科考,其中6名队员为本实验室研究人员。

中国大洋地球与环境科学研究中心成立

        经中国大洋矿产资源研究开发协会办公室 [2008]2号文件批准,中国大洋地球与环境科学研究中心于2008年1月7日正式成立。该中心是一个跨部门、多学科、以深海地球与环境科学研究为重点的学术研究及工作平台,是一个服务于我国国际海底区域工作的深海科学研究和咨询中心。实行大洋协会办公室领导下的执行委员会主任负责制。
学术委员会主任:汪品先院士;执行委员会主任:周怀阳教授。

Hello world!

Welcome to 海洋空间. This is your first post. Edit or delete it, then start blogging!